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Abstract  

The study focuses on the development of efficient methods for solving inverse problems of 

ultrasound tomography as coefficient inverse problems for the wave equation. The inverse 

problem consists in finding the unknown wave propagation velocity as a function of coordinates in 

three-dimensional space. Efficient iterative methods are proposed for solving the inverse problem 

based on direct computation of the residual functional. One of the most promising directions of 

ultrasound tomography is the development of ultrasound tomographs for medical research, and 

primarily for differential diagnosis of breast cancer. From medical viewpoint, diagnostic facilities 

for differential cancer diagnosis should have a resolution of 3 mm or better. Because of this 

requirement inverse problems of ultrasound tomography have to be solved on dense grids with 

sizes of up to 1000x1000 on cross sections of three-dimensional objects studied. Supercomputers 

are needed to address such inverse problems in terms of the wave model described by second-

order hyperbolic equations. The algorithms developed in this study are easily scalable on 

supercomputers running up to several tens of thousands of processes. The problem of choosing the 

initial approximation for iterative algorithms when solving the inverse problem has been studied.  
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1. Introduction 

Currently, tomographic facilities [1-5] having a number of advantages over X-ray tomography are 

developed extensively in the USA, Germany, Japan, and Russia. Modern medical science is inconceivable 

without X-ray tomographic examinations, which have one drawback. Regular use of X-ray tomographs is 

itself hazardous for patients because of strong radiation exposure. MRT tomographs, along with X-ray 

tomographs, can produce high-resolution two-dimensional images of scanned areas. MRT tomography 

has its own limitations, however, it is generally believed to be safer for patients that are subject to 

repeated examinations. One of the drawbacks of MRT tomography is the high cost of examinations. 

The currently developed ultrasound tomographs can be an alternative to X-ray and MRT 

tomography. The primary task of ultrasound tomography is to address the problems of differential 

diagnosis of breast cancer – one of the most pressing issues of modern healthcare. From the medical 

viewpoint, diagnostic facilities for differential cancer diagnosis should have a resolution of 3 mm or 

better. This requirement makes it necessary to solve inverse problems of ultrasound tomography on dense 

grids with sizes of up to 1000x1000 or even 2000x2000 on cross sections of three-dimensional objects 

studied.  

From mathematical viewpoint inverse problems arising in ultrasound tomography are much more 

complex than those of X-ray tomography. The tasks of X-ray tomography can be satisfactorily addressed 

by linear models of ray optics, where the solution of inverse problems reduces to solving two-dimensional 

Fredholm equation of the first kind. Modern methods for the solution of linear ill-posed problems allow 

efficient algorithms to be developed for reconstructing high-resolution two-dimensional tomographic 

images of three-dimensional objects. Furthermore, these algorithms are easy to implement on a common 

desktop computer or a notebook.  

One of the approaches tries to address inverse problems of ultrasound tomography in terms of 

linear and nonlinear ray optical models [6-10]. However, this approach cannot provide a description for 

the physical phenomena associated with the wave nature of the sources and radiation employed, and 

hence cannot take into account diffraction of ultrasound waves, refraction, rereflection, etc. That is why in 

this paper we address problems of ultrasound tomography in terms of wave models, which we consider to 

be most consistent with reality.  

Unlike what we have in X-ray tomography, inverse problems of ultrasound tomography involve 

both transmitted and reflected signals. The sources of ultrasound waves emit pulses of ultrasound energy, 

which, after crossing the diagnosed object or after reflecting from it, are detected by receivers.  

Ultrasound tomography can use much greater amounts of data, because the signal detected by each 

receiver is a function of time rather than just a single number (the total ray absorption determined by the 

positions of the source and receiver), as is the case in X-ray tomography. Mathematical models of 

ultrasound tomography can describe such phenomena as diffraction, refraction, rereflection of waves, 

absorption, etc. Scalar wave approximation, namely, the wave equation -- a hyperbolic partial differential 

equation of the second kind -- can be used as the simplest model to describe the above physical processes. 

In this case inverse problems of ultrasound tomography can be viewed as coefficient inverse problems. 

The latter are nonlinear inverse problems and developing algorithms for their solution is a challenging 

task.  

As a research direction, coefficient inverse problems have been studied extensively since late 20 

century [11-14]. From the viewpoint of mathematical methods there are two main approaches to solving 

inverse problems in terms of wave models. The first approach is based on the use of Green functions. In 

this case inverse problems of ultrasound tomography can be reduced to a set of nonlinear Fredholm 

integral equations of the first kind [15]. The resulting problem is ill-posed. Methods of solution of linear 

and nonlinear inverse problems represented by operator equations are well known and efficient 

procedures have been developed to solve them [15,16]. This representation is naturally suitable for 

studying the capabilities of various linear approximations to the nonlinear problem of ultrasound 

tomography. Such an approximation to the nonlinear problem is evidently valid only in the vicinity of the 

required solution, and this circumstance restricts rather strongly the potential of linear approximations 

[17-21]. 

 There is another way to solve inverse problems of ultrasound tomography as coefficient inverse 

problems for hyperbolic partial differential equations. It was shown in the nonlinear formulation that 

gradient-based iterative algorithms for the construction of an approximate solution can be built directly by 

minimizing the residual functional without invoking integral representations involving the Green 

function. This approach has been called the propagation-backpropagation method  [22, 23].  Beilina and 



Klibanov [24,25] used this approach to construct the so-called c-global methods for solving coefficient 

inverse problems for hyperbolic-type equations or for the Helmholtz equation. Beilina and Johnson [26], 

Beilina [27], and Beilina and Clason [28] developed adaptive finite element method for hyperbolic 

coefficient inverse problems, presented an adaptive algorithm, and the numerical results obtained have 

demonstrated the efficiency of the proposed algorithms.  Goncharskii and Romanov [29] showed that the 

second approach has a number of advantages from the viewpoint of computer implementation compared 

to that based on Green’s function apparatus [30]. 

Wiskin et al. [1, 31] obtained a number of interesting results concerning the solution of inverse 

problems of ultrasound tomography. A distinguishing feature of the proposed approach is that the above 

authors abandon hyperbolic equation in favor of another approximation, which takes into account only the 

radiation transmitted through the diagnosed object. This approximation can describe phenomena of 

diffraction and refraction within a certain range of angles and subject to certain absorption restrictions, 

however, it is not good at describing the effects of the back reflection of ultrasound wave. The algorithms 

developed have passed evaluation tests, which involved solving not just model problems. Results of 

clinical tests obtained on mockup facilities for ultrasound diagnosis of breast cancer have been reported.   

Currently, there are no commercially manufactured ultrasound tomographs. The development of 

ultrasound tomographs has now reached the stage of mock-up studies [1-5]. A number of patents 

concerning ultrasound tomography have been registered. Most of these patents relate to tomographic 

schemes where the 3D structure of the object studied is reconstructed from cross sections as a sequence of 

2D images [32-34]. There are patents describing reconstruction of the 3D structure directly from the 

measurements made by receivers located on a certain surface [35-36]. A number of patents describe 

algorithms for solving the problems of wave diagnostics [37-38].  

The large number of publications and patents dedicated to ultrasound tomography is indicative of 

how much attention to the problems of this field is paid by both mathematicians and medics who are 

looking forward to new tomographic techniques, first and foremost to those aimed at differential 

diagnostics of breast cancer. In this paper we try to investigate the limiting capabilities of ultrasound 

tomographic examinations in terms of a mathematical model based on second-order hyperbolic equation. 

We propose efficient algorithms for solving inverse problems of ultrasound tomography at a high 

resolution of up to 1000x1000 or even 2000x2000 on two-dimensional reconstructed cross sections. 

Iterative algorithms are based on exact computation of the gradient of residual functional, which is 

determined by solving a certain conjugate problem. We demonstrate the efficiency of the proposed 

algorithms implemented on a supercomputer by solving a number of model problems. 

The specific feature of the ultrasound tomography problems  considered is that ultrasound 

properties of the breast differ little in the cases of healthy and cancerous tissues. The sound speed in water 

is equal to c0 = 1500 m/s, whereas the speed of sound propagation in various breast tissues differs from c0 

by no more than 10% (the speeds of sound propagation in fat and muscular tissue are approximately equal 

to 1450 and  1570 m/s, respectively. Different authors report different speeds of sound propagation in a 

carcinoma. The reported estimates are 1585-1630 m/s  [1], 1530.8 m/s [39], 1527.4 m/s [40], 1564 m/s 

[41], and 1530/1550 m/s [42]. Thus the sound speed in a carcinoma differs from c0 = 1500 m/s by 10-15% 

or less. 

Hence the speed cross section has to be reconstructed in the case of a very low contrast, when 

healthy and cancerous tissues differ very little in the speed of sound propagation. This circumstance 

imposes stringent requirements on the algorithms of the reconstruction of tomographic images. 

 

2. Formulation and methods of solution for the inverse problem 

In this paper we study the problem of ultrasound tomography in the framework of two models. 

 2.1. Base model of wave propagation in non-attenuating media  

There are different formulations of coefficient inverse problems for hyperbolic-type equations [22, 24, 

43]. In this paper we also address the inverse problem in the scalar approximation. Consider the wave 

equation that describes some acoustic field ),( tru in the domain NR ,  N=2, 3 bounded by the 

surface  S during time (0,T) with a point source located at 0r  

 )()(),(),()( 0 tfrrtrutrurc tt , (1) 

 0)0,()0,( trutru t , (2) 



 ),(| trpu STn . (3) 

Here )(5.0 rc  is the wave velocity in the medium; NRr , the position of the point in space, and ,  the 

Laplacian operator with respect to r . The pulse generated by the source is described by function )(tf ; 

STnu | is the derivative along the normal to the surface S in the domain TS ,0 , and ),( trp , some 

known function. We assume that imhomogeneities of the medium are due solely to velocity variations, 

whereas outside the inhomogeneity domain const)(rc , where const  is known.  

Wave equation (1) effectively describes such wave effects as diffraction, refraction, and 

rereflection in non-attenuating media. However, even in the framework of this model the solution of 

inverse problems of ultrasound tomography requires solving ill-posed problems. The inverse problem 

consists in finding function )(rc  that describes the distribution of inhomogeneities by analyzing 

experimental measurements of wave ),( tsU  at the domain boundary S  during time ),0( T  for different 

positions 0r  of the source. 

Let us now introduce the following functional of residual 
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Here 
2

 is the squared norm in the )),0((2 TSL  space and ),( tsU  are the experimental data at the 

domain boundary S  during time ),0( T . 

The breakthrough results in solving the problems of ultrasound tomography are associated with the 

computation of the gradient of functional ))(( cuΦ . Formulas for the gradient of functional ))(( cuΦ  in 

different formulations were derived by Natterer and Wubbeling [22], Beilina and Klibanov [24], and 

Goncharskii and Romanov [29].  

 
2.2. Base model of wave propagation in attenuating media  

Consider now the problem described by the wave equation in the domain NR (N=2,3) bounded by 

the surface S during time (0,T) with a point source located at point 0r   

 )()(),(),()(),()( tfqrtrutruratrurc ttt , (5) 

 0)0,()0,( trutru t , (6) 

 ),(| trpu STn . (7) 

Here )(5.0 rc  is the wave velocity in the medium; )(ra describes attenuation in the medium; STnu |  is 

the derivative along the normal to the surface S in the domain TS ,0 , and ),( trp  is a known function. 

The inverse problem consists in finding functions )(rc  and )(ra  that describe the inhomogeneities given 

measurements of wave ),( tsU  at the domain boundary S  during time (0,T)  for different source positions 

0r . Natterer [44] considered the coefficient inverse problem for hyperbolic-type equations with 

attenuation in a different formulation. 

Problem (5-7) is known to define ),( acu as an implicit function of )(rc  and )(ra . Let us now 

formulate the inverse problem as that of minimizing the following quadratic functional  
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with respect to functions )(rc  and )(ra . Here 
2

is the squared norm in the )),0((2 TSL  space and 

),( tsU are the experimental wave measurements at the domain boundary S  during time ),0( T .  

The inverse problems considered are ill posed, and therefore regularization terms can be added to 

functionals (4) and (8). However, we can do without such terms in these functionals, because the iterative 

methods used to solve the corresponding problems have, in a sense, certain regularizing properties [15]. 

We now write out the formulas for the gradients of residual functionals (4) and (8). Let us formulate the 



mathematical problem that will allow us to compute the gradient of functional (8). We denote by  the 

pair ac, , aacс uuu ddd and find the component of the increment of functional (8) that is 

linear in arbitrary variation )d,(dd ac  
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where u  is the Frechet derivative. 

Function ),( tru  is a solution of problem (5-7) for some )(r  (i.e.,  ),( tru is an implicit function of 

)(r ) and hence taking the total derivative with respect to )(r  in formula (5) yields 
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We then introduce linear operator Р that consists in constraining function to the domain 0t and find 

from equation (6) that const0)),(()0,( truPtru . We now differentiate this relation with respect 

to )(r  to obtain 0d()d()),(( )0,)(
'

trd uuPtruP . It similarly follows from equations 

(6) and (7) that 

 0)0,(d()0,(d( )) trutru t , (11) 

 0|d( ) STn u . (12) 

Function ),)(d( tru  is thus a solution of problem (10-12) for any variation  ac d,dd . We 

now introduce operator А: ),(),()(),()( trutruratrurcAu ttt . 

Consider what we call the "conjugate" problem to the main problem (5-7) 
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where u is the solution of the main problem (5-7). Let us denote ),(~),)(d( trutru  for some variation 

d . Consider now the scalar product uBw ~, . We use equations (11), (14), and (15) to obtain 
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We thus have 
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We then consider the scalar product uAw ~,  and use equations (6), (10), and (14) to obtain 
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On the other hand, we use equations (11), (12), and (14) to obtain 
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We derive from equations (17) and (18) 
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It then follows from equations (9), (16), and (19) that 
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We now isolate the terms that are linear in variations cd  and ad to derive the following final formula for 

the gradient of functional ))((uΦ   
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Here ),( tru is the solution of the main problem (5-7) and ),( trw , that of the "conjugated" problem (13-

15) for the given )(rc  and )(ra . Hence to compute the gradient of the functional, we have to solve both 

the main and "conjugate" problems. 

We now set )(ra =0 to derive the following formula for the gradient of functional (4) for non-

attenuating media 
T

ttc ttrutrwcuΦ

0

d),(),())(( .     (21) 

Here ),( tru is the solution of the main problem (1-3) and ),( trw , that of the following "conjugate" 

problem (22-24) for the given )(rc  

 0),(),()( trwtrwrc tt , (22) 

 0),(),( TtrwTtrw t , (23) 

 Uuw STSTn || , (24) 

where u is the solution of the main problem (1-3). Thus to compute the gradient of the functional, it is 

necessary to solve both the main and the "conjugate" problems. 

Given сΦ  from equation (21), one can build various iterative schemes for minimizing the 

functional of residual (4). The numerical methods employed in this paper use the steepest descent method 

to numerically solve at each iteration the problem of one-dimensional minimum search in the gradient 

direction. Other gradient methods including regularized iterative procedures [15] can also be used to this 

end. 

Similarly, for model (5-7) iterative procedures can be built to determine functions  c(r) and a(r) 

using formula (20) for the gradient of the residual functional of the problem with attenuation. Numerical 

methods are the same for basic models of wave propagation in both media with and without attenuation. 

We therefore performed model computations for the basic model without attenuation in order to 

investigate the limiting capabilities of the algorithms of the reconstruction of the speed cross section  in 

problems of ultrasound tomography. This is the most popular model in all studies involving inverse 

problems of wave tomography [12, 13, 14, 18, 19, 22, 24]. Another aim of modeling is to find out what is 

the effect of diffraction, refraction, and rereflection on the reconstruction of images. 

 

3. Numerical algorithms for solving the inverse problem 

Solving inverse problems of ultrasound tomography in the above formulation of equation (1) in three-

dimensional space 3R  is a difficult task. The formula for the gradient of functional ))(( cuΦ can be used 

to compute сΦ  in the case )(rc  3Rr  if receivers are located on a two-dimensional surface S.  In this 

formulation the inverse problem of ultrasound tomography appears to be rather difficult to implement 

even on modern supercomputers.   

In this paper we follow the traditional tomographic approach and consider the problem of 

reconstructing a three-dimensional object as a set of two-dimensional problems of reconstructing the 

object cross sections. We further assume that the propagation of ultrasound wave in each of the cross 

sections  can be described by equation (1) in the 2R  space at fixed z, so that  r=(x,y). We use formula 

(21) where 2Rr  to compute the gradient of the functional of residual. We similarly compute the 

functional of residual ))(( cuΦ  by function u(r,t), where 2Rr .  

We use the finite difference method to solve the inverse problem on each of the two-dimensional 

cross sections. In this formulation solving differential wave equations reduces to solving difference 

equations. We introduce the following uniform grid in the domain of function arguments 
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where h and  are the grid size in the spatial and time directions, respectively. Parameters h and   are 

related by the Courant stability condition  hc 5.0
, where )(5.0 rc  is the wave velocity. 

We use the following approximations to the second-order derivatives in equation (1) 
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In a source-free domain we obtain the following explicit difference scheme for differential 

equation (1) 
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Here uijk   is equal to the value of function ),( tru at point (xi, yj) at time tk , and сij is equal to the 

value of function )(rc  at point (xi, yj). ). In the model computations reported in this paper we use 

perfectly absorbing boundary conditions [45].   
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In model computations the domain studied is surrounded by a uniform medium, where the 

process of propagation of the sounding pulse is well understood, allowing ),( tru   and )(r,tut to be 

computed for small t. We give the form of the sounding pulse in Section 5. 

The difference scheme for w can be written in a similar way. The solution can be found explicitly 

by time layers. Gradient  (21) of functional (4) can be computed by the following difference formula 
m

k
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grad

0

11
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We now describe the steepest descent algorithm for the numerical solution of inverse problem. 

The iterative sequence 
(n)c  for minimizing residual functional (4) is built as follows.  

(1) We start with the initial approximation constсc )(
0

0 .  

(2) For 
)(c 0
 we solve direct problem (1-3)  in the difference approximation. We then use explicit 

difference scheme (25) to solve the direct problem of computing ),( tru at each detector.  

(3) We then solve conjugate problem (22-24) in the difference approximation for function 

),( tru obtained for each detector. As a result, we obtain ),( trw  at each grid point.  

(4) We use the resulting ),( tru  and ),( trw  values to compute gradient ))(( 0 )(
с cuΦ   (21)  of the 

functional by formula (26).  

(5) We then use the inferred gradient at point 
)(c 0
 to find the minimum of functional 

))(( 00 )(
с

)( cΦcΦ  with respect to parameter in the domain    0 .  

(6) We set 
)(c 1
 equal to the point of minimum of the functional and the process returns  to stage 

(1). 
  

4. Use of supercomputer technologies for implementing numerical methods for solving inverse 

problems of ultrasound tomography 

Modern supercomputers are capable of performing computations simultaneously on several tens and even 

seven hundred thousand processors. Superscalability is the capability of the development process that 

allows the resulting algorithms to be run on arbitrarily large number of processors so that the computing 

time decreases with the number of processors. The procedures devised in this paper proved to be suitable 

for supercomputers and allowed highly efficient superscalable numerical algorithms to be developed. 

The efficiency of parallel computations in solving the inverse problem is determined by the 

structure of the algorithm and its decouplability into a large number of computationally independent units. 

The problem of the diagnostic of a 3D object is considered as a set of two-dimensional problems  

each of which is a coefficient inverse problem for a hyperbolic-type equation. Joint analysis of cross 

sections is used to describe the three-dimensional structure of the object. In this approach computations in 

each cross section are performed independently. The computations for both direct and conjugate problem 



for each source position can also be performed independently. Hence parallelizing computations by 

decoupling them into cross sections and sources is most efficient. 

Explicit schemes prove to be efficient from the viewpoint of algorithm parallelization.  In such 

schemes the computation of the function value at point (xi, yj, tk ) at the new layer depends only on the 

nearest points on the current and previous layers. The proposed method of spatial parallelization consists 

in subdividing the common field into equal portions with computations for each such portion performed 

by a different computing core. To compute the function values at a point located at the boundary of a 

portion, the function values at the corresponding boundary of the neighbouring portion at the previous 

time layer must be known. We therefore add on each side of the portion a row or column containing the 

values from the corresponding boundary of the neighbouring portion. In this way each process performs 

computations for the new time layer in the inner region of its allocated portion of the common field 

independently of the other processes and then exchanges the boundary values with its "neighbours". Such 

organization allows highly scalable numerical methods to be developed for solving the coefficient inverse 

problem. 

Table 1 lists the results of numerical benchmarking of the methods developed for the ultrasound 

tomography problem considered here. Test computations were run on the supercomputer of the 

Supercomputing Center of Lomonosov Moscow State University [46].  We give the computing times for 

15 iterations of the iterative process for a single cross section and a single source for different 

partitionings of the cross section into square subregions (one CPU core per subregion with the number of 

cores varying from 1 to 100). As is evident from Table 1, increasing the number of cores to 100 decreases 

the computing time for the inverse problem on one cross section by a factor of 45. The data listed in Table 

1 demonstrate that the proposed algorithms are scalable, i.e. the computing time decreases with increasing 

number of processors. Correspondingly, the solution of the a problem with 8 sources on 40 cross sections 

is effectively parallelized on 32000 CPU cores resulting in a factor of 14000 advantage compared 

computations using a single processor. 

 
Table 1. Results of testing on "Lomonosov" supercomputer. 

Number of 

processes 

1 4 9 16 25 36 49 64 81 100 

Computing time 

for 15 iterations 

(T), (s) 

1893 903 370 291 162 121 67 64 44 40 

 

Although the above results demonstrate high efficiency of supercomputers in solving the problem 

in question, we do not consider the algorithms developed to be optimal from computational viewpoint. 

Optimization of algorithms is obviously a task of great importance, which can be addressed using various 

methods, e.g., finite-element methods, implicit difference schemes, and other minimization techniques 

such as the conjugate gradient method etc. Note that the problem of optimizing algorithms on 

supercomputers has certain specific features. Simple algorithms, e.g. those based on explicit difference 

schemes, often prove to work better than implicit schemes, which are usually more efficient when run on 

single-processor systems. The possibility of parallelizing computations into the maximum number of 

individual processes with small amount of data exchange is an important property characterizing 

algorithms used on supercomputers. In this case the computing time decreases with increasing number of 

computing cores, i.e., the program is scalable. In this study we developed superscalable software 

involving several tens of thousands of processes.  

 

5. Model computations  

We developed efficient methods for solving the inverse problem of ultrasound tomography based on 

explicit computation of the gradient of the residual functional. We developed a supercomputer software 

kit, which can be used to solve many problems involving optimization of the parameters of ultrasound 

tomographs at the design stage. We investigated how the quality of reconstruction depends on the number 

of sources and receivers, discretisation levels, pulse shape, wavelength, number of grid points, the 

distance from transducers to the object, etc. The paper size restrictions limits the number of illustrations - 

we show only a small part of them.  



We used the mathematical model described by equation (1). Figure 1 shows the experimental 

design: the numbers 1 and 2 indicate the sources and receivers, respectively. Eight sources are located at 

the midpoints of the sides and at the corners of the square and receivers are placed along the perimeter of 

the computational domain. The region studied (G) is located at the centre of the square and surrounded by 

medium L with known wave propagation velocity c0. 

 

   

Figure 1. Experimental design: the region studied (G) and domain L with known wave 

propagation velocity c0. 

We consider a sounding pulse at some time 01t  in the form of a spherically propagating wave 

in medium L given by the formula 
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where r is the distance from the current point to the pulse source; T , the pulse duration; c0, the wave 

propagation velocity in medium L ; R0,  the distance from the leading edge of the wave to the pulse 

source, and 0 , a parameter.  

 

 
Figure 2. Plot of sounding pulse 

 

Figure 2 shows the plot of sounding pulse with the following parameters: .450 , R0=10 mm, 

c0=1500000 mm/s, and T=0.00000666 s. 

Function ),( 1tru has a compact support equal to about two wavelengths. Real signal sours are 

characterized by different signals ),( 1tru . The form of the signal depends on the material the sources are 

made of, their structure, and the electric signal applied to them. Within the framework of certain models 



the electric signal can be computed to be generated and fed to a source in order to obtain the required 

initial pulse ),( 1tru . A characteristic feature of all pulses ),( 1tru  is a certain number of oscillations as 

shown in Fig. 2. The smaller are these oscillations, the better. In the idealized case there should be no 

oscillations. Development of sources and receivers for ultrasound tomography constitute a special field of 

research [3].  

The use a supercomputer made it possible to perform an extensive numerical analysis of the 

solution of the inverse problem over a wide range of parameters. The main parameters of the problem 

varied in the following intervals:  

1) sound wavelength – from 5 to 10 mm;  

2) vertical and horizontal size of the ultrasonography region – from 15 to 20 cm;  

3) number of grid points along the horizontal coordinates from 500x500 to 2000x2000;  

4) number of vertical data recording cross sections – up to 40; 

5) number of sources – from 4 to 32;  

6) distance between receivers in wavelengths – from /4 to 3 , where  is the wavelength. 

7) input data error level 0% to 15%. 

 
We solved more than 100 two-dimensional model reconstructions of the speed cross section with 

different parameters. We solved model problems both with extra errors added to experimental data and 

with exact data. As an example, we present the results of the computation for different number of sources. 

Figure 3 shows the results of the computation of the model problem solved without introducing extra 

errors. The exact solution of the problem coincides with that shown in Fig. 4a. The wavelength is  = 5 

mm. The minimum size of irregularities was about 2 mm and the size of the irregularity domain was on 

the order of 15 cm.  

Figures 3а-с show the results of the reconstruction of the speed function obtained using eight 

sources and  10, 170, and 500 iterations, respectively. Figure 3d shows the speed cross section obtained 

using four wave sources and 500 iterations. The interreceiver distance was equal to ~ 2/ . As is evident 

from Figs 3. a-c, the approximate solution obtained with the first 10 iterations is very far from the exact 

solution. The approximate solution obtained at the 170th iteration reproduces the shape of the irregularity. 

One can easily see artefacts both inside the region studied and outside it. However, this figure 

demonstrates sufficiently good resolution even for small objects with sizes of 2mm. The solution  

obtained at the 500th iteration reproduces well not only the shape of the irregularity and the absolute 

speed value. Artefacts are practically absent. Figure 3d shows the reconstructed cross section for the same 

problem, but obtained with four sources. A comparison of the results obtained at the 500th iteration 

shows that artefacts are present in the solution obtained with four sources and absent in the solution 

obtained with eight sources. 
 

 
a       в 
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Figure 3 (а - d). Results of model computations: (a) 10 iterations, eight sources; (b) 170 iterations, eight 

sources; (c) 500 iterations, eight sources; (d) 500 iterations, four sources. 

 
Table 2 lists the values of the residual functional for  10, 170, and 500 iterations and four and 

eight sources, respectively. As is evident from the Table, the functional of residual for 500 iterations and 

four sources is 10 times greater than the value of the functional of residual for eight sources. 

 
Table 2. Values of the functional of residual. 

Number of iterations 10 170 500 

Functional of residual;, 

four sources 

 

-4104.91  
-5102.37  

-6101.26  

Functional of residual;, 

eight sources 

 

-4103.66  
-6104.19  

-7101.26  

Computing time (min) 0.5 7 20 

 

We performed model computations on a 500x500 grid. Such a number of grid points ensures 

sufficiently small  approximation error to solve problems with several percent errors in experimental data. 

The computing time listed in Table 2 was obtained when running the program on 64 CPU cores.  

The aim of obtaining the results presented below was to achieve the best possible performance in 

ultrasound tomography, and they correspond to smaller errors and smaller functional values. We 

performed such studies to analyze the effect of diffraction, determine the performance limits of 

tomographic facilities in terms or resolution etc. In this case we performed our model computations on a 

1000x1000 grid. 

One of the purposes of our numerical simulations was to study the capabilities of the 

supercomputer for simultaneous computation of a large number of cross sections, which is a real task to 

be performed on ultrasound tomographic facilities [3, 4]. To this end, we carried out experimental studies 

on a computer-synthesized 3D object with model irregularities with sizes up to 150 mm. The minimal size 

of irregularity was 2 mm. The z coordinate distance between cross sections in this model problem is a 

conventional parameter, because in the model experiment the data in each cross section were computed in 

two-dimensional space and therefore the parameter in question affects only the number of reconstructed 

cross sections. Strictly speaking, it would be more correct to use three-dimensional numerical algorithms 

for computing the direct problem on detectors located on planes parallel to the x,y plane. 

Variation of velocity с(x, y, z) in the model problem did not exceed 10%. We performed model 

computations for 5 mm wavelengths and eight sources. The interreceiver distance was 2.4 mm; the 

horizontal and vertical size of the ultrasound sounding domain was equal to 200x200 mm
2
 and 200 mm, 

respectively. The computations were performed on a 1002x1002 grid. All computations started with the 

initial approximation c0 = const. In our model computations we set the distance between cross sections 

equal to 5 mm.  



It would be good for real facilities to have the same resolution of 2--3 mm or less in all three 

coordinates x, y, and z. Unlike what we have in the case of x-ray tomography, the possibility to reduce the 

pixel size in z in ultrasound tomography is limited by the requirement that cross sections in z should be 

independent of each other. The cross-section thickness that allows them to be considered as independent 

is determined not by computational schemes, but primarily by the effects of diffraction, refraction, 

rereflection, etc. For a more detailed discussion of the possibility for ultrasound tomography to 

reconstruct independent cross sections that are 2--3 mm apart see Section 6 of this paper.  

In our simulations of the reconstruction of 3D irregularity we solved the direct problem of 

ultrasound wave propagation in each two-dimensional domain without introducing extra simulated errors. 

We then used the data obtained to solve the inverse problem of reconstructing function с(x, y, z) at each 

fixed  z = zi (i = 1, … 40). Because of the paper size restrictions we show in Figs. 4--7 only the results of 

reconstruction for each 10th cross section of the the speed of ultrasound wave propagation in the object 

studied as a function of x, y at fixed  z = zi (i = 1, … 40).   

The left-hand panels of Figs. 4--7 show the cross sections of the phantom. The right-hand panels 

show the resulting reconstructed images. Speed is colour coded and the colour scale is shown on the right 

of each image. Figure 8 shows the cross section of wave propagation speed in the irregularity as a 

function of the x-coordinate. The dashed line corresponds to the exact solution. Our developed algorithms 

can be used to reconstruct not only the shape of the irregularity, but also the speed as a function of the 

coordinate. One can also see that the algorithm reconstructs fairly well even small, 2--5 mm irregularities. 

Figure 8 clearly shows the ringing effect of the oscillation of the reconstructed image at the locations of 

the «discontinuity» of the exact solution. These effects are due to the wave nature of ultrasonic sources 

and, in particular, to the oscillations of the sounding pulse (Fig. 2) 
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Figure 4-7 (а, в). Model (left panel) and reconstructed (right panel) cross sections of the 3D object. 
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Figure 8a, b. Plots of the cross section along the AA line in Fig. 4b: (a)  from pixel 100 to pixel 500 and (b) 

from pixel 540 to pixel 660 

 

We solved model problems of a fine 1000х1000 grid in x, y in a  20x20 cm
2
 square and 3000 grid 

points in t in interval from 0 to T. The aim of simulations was to determine the performance limit of 

ultrasound tomography in the case where the errors were determined by the error of the computation of 

the direct problem in terms of the adopted model. We chose a fine grid because we used an explicit 



difference scheme to solve the direct problem. In these simulations the propagation of the initial pulse in 

space is approximated on 25 grid points in the coordinates x and y in order to ensure a good 

approximation of the Laplacian. It is the need to numerically solve the direct and conjugate problems  of 

wave propagation using explicit schemes that makes it necessary to use a fine grid with about 1000x1000 

points. A fine grid in t has to be chosen because of the Courant relation  hc 5.0 , which ensures the 

convergence of the explicit scheme. 

Reducing the number of grid points in x,y below 500x500 degrades the quality of the 

approximation of the differential operators of both the direct and conjugate problems. Simulations show 

(Figs. 3a--d) that a 500x500 grid in x,y is quite sufficient for solving problems with several percent errors 

in initial data.  

Let us now consider yet another reason why obtaining very detailed images is a factor of great 

importance in addressing problems of ultrasonic tomography. Tomographic problems are characterized 

by two resolutions: the spatial resolution and the resolution in terms of the reconstructed coefficient. This 

coefficient characterizes density and speed in the case of x-ray and ultrasonic tomography, respectively. 

The central problem in medicine is how to reveal tumour in the case of small speed deviations that do not 

exceed 10%. It is very important to determine the shape of the tumour, which to a considerable degree 

determines whether the tumour is nonmalignant. Rugged (stellate) shape is often indicative of malignant 

nature of the tumour. To solve the latter task it is important to  reconstruct the cross section very 

precisely. 

We now present some of the simulation data that characterize the potential of supercomputers 

compared to uniprocessor computers.  

The steepest descent method ensures monotonic decrease of the residual functional. As is usually 

the case in minimization problems, the functional of residual first decreases rather rapidly, approaches the 

error after many iterations, and then practically ceases to decrease. In our model simulations of the 

inverse problem without introducing extra errors into experimental data we reduced the residual 

functional by a factor of 10000 after 700 iterations, which took about four hours when run on  20480 CPU 

cores of "Lomonosov” supercomputer. We obtained this result with the only aim to demonstrate the 

limiting capabilities of the supercomputer when used to address ultrasonic tomography tasks with very 

small errors. 

When addressing real tasks involving data with errors on the order of several percent the problem 

can be solved on a 500x500 grid with 300--400 iterations. The use of 2560 CPU cores of the 

supercomputer makes it possible to solve this problem on 40 layers in ~15 min. This solution reduces the 

computing time by more than a factor of 1000 compared to uniprocessor computations. 

Acoustic wavelength is an important parameter of ultrasonic tomography. The 5 mm wavelength 

chosen for simulations is greater than the wavelengths usually employed in common ultrasonography. 

Этот выбор обусловлен тем, что в задачах томографии необходимо получать сигнал на детекторах 

с высокой точностью. Soft tissues absorb ultrasonic radiation and absorption depends strongly on 

frequency, or, what is the same, on wavelength. Simulations show that the adopted ~5 mm wavelength 

range allows cross-section features with sizes smaller than 2 mm to be reconstructed in the case of small 

errors in initial data. Shorter wavelength, on the one hand, improves the resolution, and, on the other 

hand, decreases -- because of absorption -- the signal-to-noise ratio. The sounding pulse shown in Fig. 2 

actually contains a wide frequency spectrum, which also includes higher frequencies. 

 

6. Conclusion and discussion 

1. The aim of this study is to determine the capability limits of ultrasound diagnosis of breast 

tumour. Inverse problems of ultrasound tomography, even when solved in terms of the simplest wave 

equation model, reduce to nonlinear coefficient  inverse problems. Solving inverse problems on a fine 

grid to ensure high resolution is impossible without using supercomputers. Our proposed solution 

algorithms for inverse problems can be used to efficiently solve inverse problems in the above 

formulation on fine grids with sizes of up to 1000x1000. We thus now have a tool, which can be used to 

analyze various experimental schemes, the effect on the results of the reconstruction of source and 

detector properties, wavelength dependence of the results, etc. already at the design stage. As a result, it 

becomes possible to determine the optimum parameters of tomographic facilities designed. 

2. The emphasis in our simulations was on assessing diffraction effects in the solution of inverse 

problems in terms of the base model (1-3). We show, in terms of the model considered, that cross sections 

of a three-dimensional object can be, in principle, reconstructed with a high resolution of 2-3 mm or 

better. These results were obtained in terms of a stationary scheme without elements of rotation (with 



fixed transducer positions) in the case of a small number of sources, but sufficiently large number of 

receivers located ~ /2  apart from each other. 

3. Simulations demonstrated that it is possible to reliably reconstruct not only the shape of the 

irregularity, but also the value of function с(х,у). 

4. The most important difficulty of the approximate solution of nonlinear problems is the choice 

of the initial approximation. Numerous (more than 100)  computations of model problems in the domain 

studied showed that within the parameter domain considered the algorithms developed solve efficiently 

the inverse problem in iterative schemes starting with the initial approximation  с(x,у)=const. This may 

be due to the fact that  the speed of sound propagation in human tissue differs from the corresponding 

speed in both nonmalignant and malignant breast tumour by no more than 10% and hence the adopted 

initial approximation is close to the global minimum of the functional.  

5. Our developed algorithms use the methods of functional minimization well known since the 

time of Newton  -- such as the steepest descent method, which, as shown by simulations, prove to be very 

efficient for solving the problems of ultrasonic tomography in terms of model (1-3). 

6. We wrote out the formula for the gradient of residual in terms of one of the models involving 

attenuation (5-7), allowing the gradient methods used for inverse problem (1-3) to be applied to the 

problem with attenuation. In this case two functions - c(x,y) and a(x,y) - are to be reconstructed. The 

gradient of the functional of residual can be computed by solving the conjugate problem  (13-15). The 

fundamental difference between the conjugate problem  (22-24) in terms of model (1-3)  and the 

conjugate problem  (13-15) in terms of model (5-7) is that the pulse decays in the model with attenuation 

in the case of the direct problem. Correspondingly, the wave amplitude w(r,t) increases in the  conjugate 

problem, which is solved backwards in time. 

7. The attenuation factor in ultrasonic tomography problems is every bit as important as are 

diffraction effects. Attenuation really exists and depends strongly on frequency. The signal is totally 

absorbed at high frequencies > 10 MHz. This wavelength range is used in common ultrasonography 

facilities to diagnose subcutaneous tissues in the reflective diagnosis mode. Choosing the optimum 

frequency range for ultrasonic tomography is an important problem. On the one hand, resolution increases 

with frequency. On the other hand, absorption increases nonlinearly with frequency, resulting in a 

substantial reduction of the signal-to-noise ratio and, consequently, in the increased error of input data. 

Several models have been developed to describe the absorption of ultrasonic radiation. In this 

paper we propose algorithms for solving the problem in terms of one of the  simplest absorption models. 

We consider assessing the applicability of models, their underlying physical principles, the capabilities of 

various models to interpret ultrasonic tomography data to be a separate and very demanding task, which 

lies beyond the scope of this paper. 

8. Assessing the possibility of solving the three-dimensional problem of ultrasonic tomography 

by layers is a separate task of great importance. Standard tomographic scheme of the study of a 3D object 

by 2D sections is ideal for X-ray tomography. X rays can be absorbed, but they are practically impossible 

to deflect. The applicability of this approach to ultrasonic tomography is not yet entirely understood. 

What is the minimum thickness of layers in ultrasonic tomography as a function of frequency for them to 

be independent of each other? What is quality of reconstruction of a 3D object in the case of multilayer 

ultrasonic tomography? 

Naturally, these problems can and should be addressed experimentally. However, this approach 

involves a number of difficulties. The point is that real detectors do not ideally coincide with each other, 

each of them has its three-dimensional power-beam pattern, the initial pulse should be stable and 

accurately measured, one has to take into account the variation of the signal in the analog part, etc. 

There is another approach. We can try to solve the problem via mathematical simulations. The 

direct problem for a simple 3D object can be solved exactly (preferably analytically) to compute the wave 

field at the detectors located in a plane. We can then solve the problem of two-dimensional reconstruction 

of the image and compare the result obtained to the corresponding cross section of the 3D object. As a 

test body we can use a spherically symmetric 3D object containing a small sphere at its centre. The 2D 

cross sections can be reconstructed in the case of different spacing between them in order to estimate the 

distance at which these cross sections become independent of each other. Despite the simple formulation 

of this problem, its solution involves overcoming a number of difficulties - and some of them are not of 

computational nature. The computation of the direct and inverse problems should be based on the same 

mathematical models. 

9. Formulas (20) and (21)  for the gradient of the functional remain valid both for the two- and 

three-dimensional case. The proposed supercomputer computational techniques can be formally used to 



compute simulated problems for the three-dimensional case, where the domain studied is located inside a 

three-dimensional cube with the sources and receivers located on its edges. However, solving such 

problems is a challenging task even for a supercomputer. We believe that this is a difficult, yet 

undoubtedly solvable task. However, in the case of differential diagnosis of breast cancer of interest are 

only algorithms that allow irregularities to be reconstructed with a high resolution. 

10. The inverse problem with incomplete data, where sources and receivers are located on five 

edges of the cube with no sources of receivers on the sixth edge, is even more challenging. Such problems 

-- especially  in models with absorption -- cannot be solved without supercomputers. 

11. The authors of this paper are ordinary supercomputer users. For us the supercomputer is just an 

instrument that allows us to solve problems that are beyond the reach of ordinary personal computers. To 

use a supercomputer, one has not to be an expert in supercomputing technologies. The facility used to 

obtain the results of this study («Lomonosov») is a general-purpose supercomputer [46]. It has  52000 

general-purpose CPU cores, has a  peak performance of 1.7 PFlops, and ranks 27th in the TOP500 List.  

Our programs are based on MPI technology. General-purpose supercomputers are very convenient tools 

for remote users to develop and debug algorithms and run simulations. 

However, the power consumption of such a supercomputer amounts to 2.5 MW, and it is 

impossible to imagine it as a part of an ultrasonic tomographer. On the other hand, GPU based 

supercomputers are completely applicable to this end. Such supercomputers having about 40 GPUs can be 

mounted in one to two "racks" the size of an ordinary refrigerator.  The power consumption of a GPU 

based supercomputer is of about ~20 kW. Such a facility is not too expensive and can be incorporated 

into an ultrasonic tomographer. Programming GPU based supercomputers is a more difficult task than 

programming for general-purpose supercomputers, and the algorithms should be custom developed based 

on the specifics of programming for GPUs. 

The seemingly resource hungry explicit schemes of the solution of ordinary differential equations 

fit ideally the GPU structure, allowing a general-purpose supercomputer to be replaced by two racks with 

a GPU based supercomputer with a power consumption 20 kW providing a speed gain by a factor of 

several thousand. Whether a similar result can be achieved using implicit schemes is an open question. 

This does not mean that the proposed algorithms are optimal from the viewpoint of running on 

supercomputers. Optimization of numerical algorithms is undoubtedly a task of great importance. 
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