
WaveTomography 1.0 software
User manual

1

1 Formulation of the inverse problem of wave tomog-
raphy and its solution method

The wave tomography technology aims to obtain an image of the internal structure of
an object via sounding the object with waves and measuring transmitted and scattered
waves around the object. Main applications are medical imaging, nondestructive testing,
seismic studies. The basic scheme of a tomographic examination is shown in Figure 1a.
The object being imaged occupies region G. In medical imaging, region L is filled with
water with known properties. The detectors are located on circle Γ. The objective is to
reconstruct the speed of sound in region G using the ultrasonic waves radiated from the
emitters, scattered by the object and registered by the detectors.

(a) (b)

Figure 1: Scheme of tomographic examination (a), layer-by-layer 3D tomography (b)

Figure 1b shows the scheme of the layer-by-layer 3D wave tomography. Emitters and
detector are located in a horizontal plane that can shift vertically. The images are acquired
in multiple horizontal imaging planes, yielding a representation of a 3D object in the form
of a stack of 2D cross-sections.

The inverse problem of wave tomography is posed as a coefficient inverse problem, in
which the unknowns are the speed of sound and the absorption factor at each point of
the object. A scalar wave model based on a second-order hyperbolic differential equation
(1) is used to simulate the process of wave propagation numerically. This model accounts
for diffraction, refraction, multiple scattering and absorption of ultrasound waves.

c(r)utt(r, t) + a(r)ut(r, t)−∆u(r, t) = 0; (1)
u(r, t)|t=0 = F0(r), ut(r, t)|t=0 = F1(r). (2)

Here, u(r, t) is the acoustic pressure; c(r) = 1/v2(r), where v(r) is the speed of sound;
a(r) is the absorption factor; r = {x, y} is a point in the imaging plane, and ∆ is the
Laplacian with respect to r. Initial conditions (2) represent the wavefield at the initial
time of the numerical simulation.

Finite-difference time-domain method (FDTD) is employed to solve equations (1) – (2).
We define a uniform rectangular finite difference grid: xi = ih, yj = jh, tk = kτ ; i, j =

2

1, ..., N, k = 1, ...,M , where h is the spatial discretization step, and τ is the time step. A
second-order finite difference scheme approximates equation (1):

cij
uk+1
ij − 2ukij + uk−1ij

τ 2
+ aij

uk+1
ij − uk−1ij

2τ
−

Lk
ij

h2
= 0. (3)

Here, ukij = u(xi, yj, tk) are the values of u(r, t) at point (i, j) at the time step k; cij and aij
are the values of c(r) and a(r) at point (i, j). The first term approximates c(r)utt(r, t),
the second term approximates a(r)ut(r, t). The discrete Laplacian is denoted by Lk

ij.
A fourth-order numerical approximation on a 5×5-point stencil is used for the discrete
Laplacian:

Lk
ij =

i0+2∑
i=i0−2

j0+2∑
j=j0−2

viju
k
ij. (4)

Collecting the terms with uk+1
ij in (3), we obtain an explicit finite-difference scheme for

the wave equation (1):

uk+1
ij =

(
2
cij
τ 2
ukij −Lk

ij +
(aij

2τ
+
cij
τ 2

)
uk−1ij

)(aij
2τ

+
cij
τ 2

)−1
. (5)

This scheme allows us to compute the wavefield u(r, t) sequentially in time, starting
witn initial conditions (2). The parameters h and τ are related by the Courant stability
condition c−0.5τ < h/

√
2. For the problem considered, we used a time step equal to

τ = 0.3c0.50 h, which ensured the stability of the finite difference method.
Solving two-dimensional equation (1) using explicit difference schemes involves per-

forming O(N2T) operations to compute the wavefield propagation, where N is the number
of grid points along spatial dimensions, and T is the number of time steps. Such amount
of computation in a reasonable time is a feasible task for modern supercomputers.

In order to solve the inverse problem of wave tomography, a direct problem is solved to
obtain the boundary values and the simulated wavefield u(s, t) at the detectors assuming
the current approximate values of the coefficients c(r) and a(r). The direct problem
is solved for each ultrasound emitter at each iteration of the gradient-descent solution
method.

The inverse problem of wave tomography is a ill-posed coefficient inverse problem
for the wave equation (1). The objective is to determine the speed of sound c(r) and
absorption factor a(r) inside the medium, while the wavefield u(r, t) is known only at the
detector positions. The software being ported in this project solves the inverse problem
via minimizing the residual functional

Φ(u(c, a)) =
1

2

T∫
0

∫
S

(u(s, t)− U(s, t))2 ds dt (6)

for its argument (c, a). Here U(s, t) are the data measured at surface Γ for the time period
(0, T), u(s, t) is the solution of the direct problem (1)–(2) for the given c(r) = 1/v2(r) and
a(r). The residual functional is the sum of the residuals (6) obtained for each ultrasound
emitter.

3

The gradient Φ′(u(c, a)) = {Φ′c(u),Φ′a(u)} of the functional (6) with respect to the
variation of the sound speed and absorption factor {dc, da} has the form:

Φ′c(u(c)) =

T∫
0

wt(r, t)ut(r, t) dt, Φ′a(u(a)) =

T∫
0

wt(r, t)u(r, t) dt. (7)

Here u(r, t) is the solution of the direct problem (1)–(2), and w(r, t) is the solution of the
“conjugate” problem with the given c(r), a(r), and u(r, t):

c(r)wtt(r, t)− a(r)wt(r, t)−∆w(r, t) = E(r, t); (8)
w(r, t = T) = 0, wt(r, t = T) = 0; (9)

E(r, t) =

{
u(r, t)− U(r, t), where r ∈ Γ and U(r, t) is known;
0, otherwise.

(10)

An approximate solution to the inverse problem can be obtained via an iterative
gradient descent method. The gradient of the residual functional is computed, and
the current approximation of coefficients c(r) and a(r) is updated: {c(n+1), a(n+1)} =
{c(n), a(n)}−α · {Φ′c(u),Φ′a(u)}, where n is the iteration number. The process stops when
the residual value reaches the level determined by measurement errors and numerical sim-
ulation errors and thus does not decrease any further. Each iteration involves solving
direct (1)–(2) and conjugate (8)–(10) problems, which require simulating the wave propa-
gation process in forward and reverse time. This technique is also known as propagation-
backpropagation (PBP).

The gradient descent method involves computing successive approximations of un-
known coefficients over many iterations. Under certain conditions, the gradient descent
process converges to the global minimum of the residual functional, which represents an
approximate solution to the inverse problem.

2 Overview of the software
Open-source “WaveTomography” software can be used in research and educational projects
on wave tomography, computational diagnostics, numerical simulation and supercomputer
technology. The software implements the algorithms for direct and inverse problems of
wave tomography for Intel x86-64, ARM and GPU computing platforms and runs under
Linux-compatible operating systems.

The software is implemented in C++ using open-source "vectorclass" library for Intel-
compatible processors and OpenCL interface for GPU computing. The process is designed
to run on a single CPU socket. Apply taskset or an analogous command as necessary
to select a CPU socket on a particular system. The computations are parallelized over
multiple computing cores using OpenMP library. The software is free, distributed under
GNU General Public License v.3.

The software performs the following functions:

4

• Computing the simulated wavefield at the detectors using a pre-defined numerical
phantom that specifies the parameters c(r) and a(r) in a single imaging plane.

• Computing an approximate solution to the inverse problem of wave tomography using
the previously computed wavefield. The software performs a limited number of itera-
tions of the gradient descent method of minimizing the residual functional and stops
when the minimum is found or the limit on the number of iterations is reached.

• Generating parametrized test phantoms. The automatic routines ensure that the
generated model problems are solvable in a single run. The auto-generated phantoms
correspond to soft tissues in application to medical imaging. The phantom consists of
a circular mass approximately 8 cm in diameter with a sound speed lower than that in
water (1.5 km/s). The phantom contains randomly placed inclusions of varying sound
speed and absorption factor. Two small inclusions 2 mm in diameter in the center of
the image serve as a resolution target.

The phantoms can be accessed by number, which serves as a seed to the random
number generator. The phantoms with the same number are the same on all systems.

• During the process, the program reports iteration number and total time spent. The
process can be stopped at the next iteration by creating a file named ’stop’ in the
current directory.

WaveTomography software implements the algorithm for solving direct and inverse
problems of wave tomography in application to medical ultrasound imaging for breast
cancer diagnosis. The software has been developed at Lomonosov Moscow State Univer-
sity. Copyright (c) 2021 Seryozhnikov S.Y, Romanov S.Y.

This program is free software: you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program. If not, see <https://www.gnu.org/licenses/>.

3 Implemented algorithms
“WaveTomography” software implements the algorithms for solving direct and inverse
problems of wave tomography on model problems. Figure 2a illustrates the direct solution
algorithm. The direct problem solution algorithm takes an image as input, simulates wave
propagation through the object and produces a dataset representing the signals recorded
by the detectors. Initial pulses, emitter and detector placement are specified by model
parameters. By default the software provides randomly generated sample images and
reasonable simulation parameters so that these images can be reconstructed.

Figure 2b illustrates the direct solution algorithm. The inverse problem solution al-
gorithm is an iterative gradient descent method of minimizing the residual functional

5

Input
c(r), a(r)

Approximate
c(r), a(r)

Initial
pulse

generation

Emitters and detectors
placement

Waves recorded by detectors

Wave
simulation

Direct
problem

Gradient
computation

Memory
buffer

Simulated
dataset

Simulated
dataset

Output

Input

Output image

a) Direct problem solution algorithm

b) Inverse problem solution algorithm

Iterative
update

Figure 2: Flowchart of the direct (a) and inverse (b) problem solution algorithms

6

between the simulated wave and the input data. The algorithm takes the previously
computed dataset as input and attempts to reconstruct the image of the object using the
waveform data. This is accomplished via assuming a constant initial approximation of
the coefficients c(r) and a(r) and iteratively improving this approximation by solving the
direct problem and computing the gradient of the residual functional. The memory buffer
holds the boundary values of the wave field. It reverses the wave propagation direction in
order to apply formula (7) for gradient computation. Under some conditions that are met
by default simulation parameters, the iterative process converges to the original image.

The direct problem solution algorithm implemented in the software consists of the
following steps:

• Generating a random numerical phantom for the simulation

• Generating emitters and detectors and setting the simulation parameters — emitters
and detectors are placed in a circular formation around the computational domain
(Fig. 1a).

• Generating the sounding pulse — computing the initial conditions for the wave equa-
tion corresponding to a pulse of a certain wavelength and bandwidth.

• The process of pressure wave propagation through the phantom is simulated

• The wave data at the detectors are saved to the dataset.

The inverse problem solution algorithm implemented in the software consists of the
following steps:

• The input data are read from the dataset computed via solving the direct problem

• Generating emitters and detectors and setting the simulation parameters

• A number of gradient descent iterations is performed. At each iteration, the initial
pulse is generated, the wave propagation through the phantom is simulated as in
the direct problem, then the gradient of the residual functional is computed and the
coefficients of the wave equation are updated according to the gradient.

• The approximate solution obtained as a result of the gradient descent method is saved.

7

4 Quick start guide

4.1 Compiling

The software was tested with GCC compiler 8.4.1, 10.2.0 and 12.0.0. For compiling the
software, makefiles for GNU make utility are included:

• makefile_arm for ARM 64-bit systems

• makefile_gpu for Intel Haswell-EP with GPU support.
For GPU support, the path to OpenCL library must be specified.
The default path is set to /opt/cuda/cuda-11.1/lib64

• makefile_avx512: for Intel AVX512-capable processors

• make_auto.sh: Builds a version suitable for the local system. CPU type is determined
via lscpu. MPI and OpenCL support is enabled if detected on the system. Individual
build options are listed in the makefile.

wavetm executable and the files needed for operation are placed in bin/ directory. MPI
version executable is named wavetm_mpi.

4.2 Setting up computing devices

For ARM processors, there are no special settings. ARM CPU should run in little-endian
mode for correct operation of the software.

GPU can be selected via option -GPU device_id (default: 0) on the command line
or in wavetm.ini file. If GPU support is compiled in, by default the program attempts
to use the GPU at OpenCL Platform 0, Device 0 (equivalent to -GPU 0). To use another
device, specify -GPU 0xPPDD , where PP is the hexadecimal platform number, DD is the
hexadecimal device number. Example -GPU 0x0201 uses OpenCL platform #2, device
#1 To disable GPU and use CPU only, specify -GPU -1 For GPU operation, the files
gpu.h and k2d.cl must be present in the current directory.

4.2.1 Multiprocessor operation

On a system with multiple devices, one MPI process should be run for each CPU socket
or GPU device in the system. For a multi-GPU system, -NGPUs n option specifies the
number of GPU devices per computing node. Device IDs for these GPUs are incremented
sequentially starting from the ID specified by -GPU option. The number of MPI processes
launched per node should be equal to the number of GPUs per node for correct operation.

For multi-CPU operation, one process per socket should be launched, and OpenMP
should be configured for one thread per processing element. A typical command line for
this case is:
OMP_PROC_BIND=true OMP_PLACES=threads
mpirun --̇map-by ppr:1:socket -bind-to socket ./wavetm_mpi $@
The total number of processes should not exceed the number of emitters in the simulation.
Over-subscribed configuration is not supported.

8

4.3 Running the simulations

4.3.1 Interactive demo mode

By default, if no options are specified, the program will ask for parameters in interactive
mode.
*** Interactive demo ***
Image size (480/640/800) ? 640
-size 640 selected
Number of emitters (10 - 20) ? 10
10 selected
Phantom number (any) ? 55555
#55555 selected
Saving auto-phantom ’auto_#55555’
Generating dataset ’#55555’
Loading dataset ’#55555’
...

User input is underlined. Interactive input may be unavailable on some remote-
operated computers. In this case, specify the parameters on the command line or in
wavetm.ini file. The interactive demo can be disabled by setting –DemoMode 0 option.
Demo mode restricts the simulation parameters to safe values and limits the image reso-
lution so that the computations wouldn’t take a very long time.

4.3.2 Quick start example

Quick example: wavetm -direct ’#8’ -inverse ’#8’ — run direct and then inverse
problem solution with auto-generated phantom #8 and all default parameters.

Set image size: -size N (default: 640) Valid range: 480, 640, 800
Set number of emitters: -nsources N (default:15) Valid range: 10 to 20
Examples:
wavetm -size 480 -nsources 10 -direct ’#1234’ -inverse ’#1234’
wavetm -size 800 -nsources 20 -direct ’#567’ -inverse ’#567’

If interactive demo option is compiled in, run wavetm without parameters for the
program to ask for the parameters interactively. All command-line parameters can also
be specified in wavetm.ini file. The parameters on the command line take precedence
(overwrite) the parameters specified in .ini file.

4.3.3 Solving the direct problem of wave tomography

Option: -direct <phantom_name>
’#N ’ as a name uses internally generated random phantoms, where N is a seed number.
Example: wavetm -direct ’#8’
Output: Dataset files are created (’#8.exd.NNN ’, etc.) The corresponding dataset
file names all start with #8 in this case. The auto-generated phantom is saved as
auto__8.mat (the # symbol is not allowed in MATLAB matrix names. Such symbols

9

are replaced with ’_’, or with ’x’ if it is the first symbol). The auto-generated phan-
tom can be viewed in MATLAB or GNU Octave using the script view_i.m. Example:
run view_i(’auto__8’); from MATLAB or GNU Octave. The scripts are supplied in
scripts/directory.

4.3.4 Solving the inverse problem of wave tomography

Option: -inverse <dataset_name>
Specify the same name as in -direct option to use the dataset created earlier.

Example: wavetm -inverse ’#8’
No additional options are necessary. The image size and emitters settings are taken from
the dataset.

Output: Every iteration, the program prints iteration number, gradient descent rates
and elapsed time. By default, every 10 iterations the approximate solution reached to this
point is saved in MAT format as <name>_iNNN.*, where NNN is the iteration number.
The solution gradually improves with more iterations. At the end of the process, the so-
lution reached is saved as finished_<name>.mat By default, the number of iterations is
limited to 250. The process can be stopped at the next iteration by creating a file named
stop in the current directory. The approximate solution obtained can be viewed in MAT-
LAB or GPU Octave using the script view_i.m. Example: run view_i(’finished__8’)
from MATLAB or GNU Octave.

Both -direct and -inverse options can be sulpplied at the same time. In this case,
-direct is executed first, regardless of the order of appearance.

10

5 Command line options

5.1 Task control

-direct name
Solve direct problem and create the simulated dataset. name may be an input file name
or an internal phantom number if starts with #

-inverse name
Solve inverse problem for the simulated dataset with a corresponding name. Both -direct
and -inverse may be specified, -direct is executed first.

-restart file
Supply the data file for an initial approximation for the inverse problem (raw data) or a
RST file created by the program (includes metadata to continue an interrupted process).
User-data file is an array of [2×ImageSize×ImageSize] 32-bit float items. First element
in a pair for each pixel represents the speed of sound in km/s, second element represents
the attenuation factor

–GPU 0xPPDD
Specify OpenCL device number in hex. PP=platform number, DD=device. To disable
GPU, specify -GPU -1. Default=0 (first available platform and device).

–NGPUs n
Specify the number of devices per computing node.

-DemoMode 0/1
Ask for parameters interactively if not supplied and restrict the parameters to safe limits
for a quick start. Default=1 (set by a build option). Interactive selection might not work
on remote-operated systems or under MPI.

5.2 Simulation parameters

-size pixels
Image size

-nsources n
Number of ultrasound emitters

-SrcRadius mm
Emitter placement radius

11

-RcvRadius mm
Detector placement radius

-RcvSpacing pixels
Detector spacing

-SolutionRange Rmin, Rmax
The solution is confined to the area R < Rmin (millimeters). The area R > Rmax is
assumed empty. A smooth transition is applied between Rmin and Rmax. Negative
values are relative to the field size. For example -0.8 is 80% of hte field radius. Defaults=
-0.64, -0.8

-TimeBuffer k
Specify the simulation time. k = 1 corresponds to the time for the wave to reach the
detectors. Default=1.5

-impulse l, k
Specify initial pulse length (mm) and the number of waves k. The formula for the initial
pulse is f(x) = sin(π x/l) · sin(π k x/l), x = 0...1. Default: k = 2, length determined
automatically from image resolution.

-impstart mm
Distance from the emitter (center) to the initial pulse wavefront.

-impclip wmin, wmax
Beam width control. The wavefront for cos(α) < wmin is cut off, where α = 0 is the
direction from the emitter to the center of the field. The wavefront for cos(α) > wmax is
fully preserved. A smooth transition is applied between wmin and wmax. Defaults=0.73,
0.95. If both values are below -1 the initial pulse is a spherical wave.

-nframes n
Number of simulation time frames. Overrides the auto-computed value.

5.3 Generated phantoms

Auto-generated phantoms by default are created so that the inverse problem is solvable
in a single run of the gradient-descent algorithm using default simulation parameters.

-PhantomSize mm
Phantom size

-PhantomContrast k
Increases contrast by k

12

5.4 Numerical method parameters

-v0 km/s
Speed of sound in the environment. Default=1.5

-dx mm
Pixel size. Default pixel size is computed so that the field size is 250 mm.

-dt usec
Time step in microseconds. Negative values are relative to dx. For example -dt -0.3
specifies dt = 0.3 · dx

-LAPL k01, k11, k02, k12, k22
Specify discrete Laplacian coefficients for a 5x5 stencil.

-LimitVel Vmin,Vmax
Limit the wave velocity in the sought-for solution of the inverse problem.

-LimitAtt Amax
Limit the attenuation factor in the the sought-for solution of the inverse problem.

5.5 Iterative method parameters

-MaxIter n
Maximum number of iterations.

-SaveIter n
Save output file every n iterations.

-TargetGrad dv
Specify the starting value of gradient descent step as a sound speed difference in km/s.
Default=0.004

-StepUpCoeff k
Increase step by k if the residual value decreases. Default=1.25

-StepDownCoeff k
Decrease step by k if the residual value increases. Default=0.3

-MinThreshold p
Stop the process if the residual decreases by less than p per iteration. Default=0.0003.

13

-AttGradScale k
Modify the gradient for the attenuation factor by k. k = 0 disables attenuation in the
model. Other values can be used in research to boost or dampen attenuation factor
reconstruction. Default=1

5.6 Output control

-dump nframes
Outputs the wave data every nframes time frames.

-WaveExportFormat PMB,MAT,RAW
A parameter string specifies the file format(s) for wave images created by -dump option.
Default=MAT

-ImageExportFormat PMB,MAT,RAW,RST
A parameter string specifies the file format(s) for output images. .RST files contain the
reconstructed image and iteration parameters. The iterative process can be continued
from a .RST file using -restart option Default=MAT

-PBMScale Vrange, Arange
Sound speed and attenuation factor ranges represented in .PBM images. Defaults=0.2,
0.015 Red channel represents sound speeds greater than v0, blue channel represents sound
speeds less than v0, green channel represents the attenuation factor.

-log n
n=0 (default) – minimal, n=1 – verbose logging, other values are bit masks that enable
various debug logging features. Refer to the source for details.

5.7 Computation control

-nthreads n
Specify the number of OpenMP threads per process.

-CellW n
GPU block width in 4-element vectors. Default=32

-CellY n
Block height in pixels. Default=20

-vector n
CPU SIMD vector size in 32-bit words. Possible values – 4,8,16. Not available on ARM
CPUs. Default=16 (for Intel AVX-512 CPUs). The specified vector size may be different

14

from the native CPU vector. Various SIMD modes performance can be tested with this
option.

-CPUMemory MBytes
Specify the cache size. Can be determined automatically by a performance test.

-memalign bytes
Specify the memory alignment factor. Values unsupported by the machine may result in
a bus error or a segmentation fault.

-ialign align shear
Specify the image width alignment and shift factors in pixels.

5.8 Performance testing

The tests are run only for a single CPU.

-perftest type, param

type = 1 - determine CPU cache size. param=image size for testing.
Example -perftest 1 480
Upon completion, this test writes -CPUMemory option to wavetm.ini file.

type = 0 execute performance tests:
param = 1 create optimized settings (autotune.dat) – runs multiple tests to determine
optimal settings
param = 2 apply optimized settings

-TestIncrSize Increment, MaxSize
The tests are executed for image size increasing from a size given by -size by Increment
up to and including MaxSize (pixels).
Example: -perftest 0 1 -size 640 -IncrSize 320 1280
-runs the test for image sizes 640, 960 and 1280.

-TestIncrSrc n
The tests are executed for the number of emitters decreasing from given by -nsources
by n. Example: -perftest 0 1 -size 640 -nsources 12 -TestIncrSrc 3
-runs the test for 12, 9, 6 and 3 emitters

-TestVolume pixels
Specify the test volume, total pixels computes for all simulation frames. Reasonable values
are about 1e10...2e10 (10–20 gigapixels) for the tests to take a few seconds each.

-TestDuration sec
Specify the duration of each test in seconds. Actual duration can be longer for large image
sizes.

15

-SkipScalars 0/1
Skip scalar functions in the test (test wave simulations only)

-autotune 0/1
Uses optimized settings in inverse problem. Create optimized settings if they do not exist,
use if they exist. The settings are separate for each image size and for CPU/GPU. New
settings can be created only in single-process mode.

6 Image reconstruction examples
Wave tomography image reconstruction fundamentally differs from X-ray tomographic
imaging. While in X-ray imaging the detectors record a single value, in wave tomography
the data recorded by detectors is a continuous waveform for some time period. The
inverse problem of wave tomography is nonlinear and ill-posed. The reconstructed images
represent two variables — sound speed and sound absorption factor inside the object.
The images demonstrate that it is possible to reconstruct such images from waveform
data with high resolution and high sensitivity to changes in sound speed and absorption
factor.

WaveToography software is aimed to aid the research in medical imaging for breast
cancer diagnosis, and the parameters of the simulations are set accordingly. In medical
imaging, soft tissues have low contrast, but the imaging method must detect small inclu-
sions. Auto-generated sample phantoms contain inclusions with sizes of 2 mm and larger.
Inclusions 2 mm in size are resolved, which is a typical target resolution for breast cancer
diagnosis.

Computational complexity of the inverse problem of wave tomography is proportional
to the image size, the number of time frames, the number of emitters, and the number of
gradient descent iterations. Computation time per iteration rises at least as a third power
of the image length (not counting the number of emitters), which means approximately
10-fold increase per each doubling of the resolution.

The number of iterations required to solve the inverse problem (which means to obtain
an approximate solution that cannot be improved any further under the current simulation
setup) is not known a priori and may vary arbitrarily from tens to hundreds depending
on the data, simulation setup and reconstruction precision.

The dataset generated by solving a direct problem consists of the waves recorded by the
detectors for the duration of the measurements (in this case, the numerical simulation).
The data can be examined in MATLAB or GNU octave using the viewdata.m script
supplied.

Figure 3 shows a sample data file viewed. The image shows a wave scattered off a
simulated phantom. The phantom itself is unknown at this point, these data serve as
input to the inverse problem of tomographic image reconstruction. The detector number
(horizontal) is proportional to angular direction from the center to a detector and the
vertical axis is simulation time. Obtain this image: viewdata(’#8.exd.000’); from

16

Figure 3: Input data to the inverse problem

within MATLAB or GNU Octave after running the direct problem: wavetm -nsources
20 -size 800 -direct ’#8’

The size of the input data for each ultrasound emitter is roughly proportional to the
size of the reconstructed image. In addition, the higher the resolution, the more emitters
are typically needed, making the dataset to grow faster than the image size. Actual
spatial resolution obtained in wave tomography depends mainly on the wavelength (and
measurement precision in physical experiments).

The image size is chosen so that all the details revealed by a given wavelength fit in
the image. The presented examples have the following parameters:

Dataset Image size Emitters Wavelength Time frames Files
Small: 480x480 10 9 mm 779 35 MB

Medium: 640x640 16 7 mm 1040 91 MB
Large: 800x800 20 5.6mm 1300 166 MB

Typical computing time is 2 to 10 seconds per iteration on a Kunpeng-920 CPU (single
socket). The maximum computing time is 45 minutes (the iterative process is limited to
250 iterations by default).

The simulated phantom used in the reconstructions was generated automatically by
the software. It has a diameter of 72 mm and random inclusions of varying sound speed
and absorption factor. Two dots in the center of the image are 2 mm in size, which is
much smaller than a wavelength of 9 mm. A remaining effect of the waves can be seen at
the perimeter of the phantom.

The following images were obtained on different systems — NVidia Tesla V100 GPU,
Intel Cascade Lake 6240R CPU and ARM-based Kunpeng-920 CPU.

17

Figure 4: Sound speed reconstruction for a small dataset

To obtain these images, run:
wavetm -size 480 -nsources 10 -direct ’#8’ -inverse ’#8’

After the process finishes, view the data in Matlab or GNU Octave:
View original phantom: view_i (’auto__8’);
View reconstructed image: view_i (’finished__8’);

18

Figure 5: Absorption factor reconstruction for the small dataset

19

Figure 6: Sound speed reconstruction for the medium dataset

To obtain these images, run:
wavetm -size 640 -nsources 16 -direct ’#8’ -inverse ’#8’

After the process finishes, view the data in Matlab or GNU Octave:
View original phantom: view_i (’auto__8’);
View reconstructed image: view_i (’finished__8’);

20

Figure 7: Absorption factor reconstruction for the medium dataset

21

Figure 8: Sound speed reconstruction for the large dataset

To obtain these images, run:
wavetm -size 800 -nsources 20 -direct ’#8’ -inverse ’#8’

After the process finishes, view the data in Matlab or GNU Octave:
View original phantom: view_i (’auto__8’);
View reconstructed image: view_i (’finished__8’);

22

Figure 9: Absorption factor reconstruction for the large dataset

23

